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Management strategy evaluation (MSE) is the process of using simulation testing with feedback to examine the robustness of candi-
date management strategies to error and uncertainty. The structure of the management strategy can be selected to attempt to satisfy
desired (but conflicting) management objectives. MSE was used to assess the performance of the current management strategy and an
alternative management strategy (the “dynamic B0” strategy) for the fishery for walleye pollock (Theragra chalcogramma) in the Gulf
of Alaska (GOA), when age-1 recruitment was driven by climate. The relationships between age-1 abundance and climate indices (and
the uncertainties associated with these relationships) were characterized within an age-structured operating model that was fitted to
the data for GOA walleye pollock. Projections into the future were based on the fitted relationships and predictions of those indices
from the Intergovernmental Panel on Climate Change (IPCC) models, using the current or the alternative management strategy to
determine catch limits. Management performance (the ability to leave the stock close to the management reference level and
achieve high and stable catches) deteriorated when age-1 recruitment was forced by climate, although stocks were kept near the refer-
ence level on average. In addition, the ability to estimate management-related quantities, such as spawning biomass, deteriorated
markedly when recruitment was forced by climate. Performance was sensitive to the choice of IPCC dataset and, in particular, esti-
mation and management performance was poorest (outcomes most variable) for the IPCC datasets that led to the greatest variation
in recruitment to the fishery. Although basing management on a “dynamic B0” management strategy led to improved management
and estimation performance, the magnitude of the improvement was slight.
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Introduction
Environmental variability, as it affects marine ecosystems, occurs
on multiple spatial (local, regional, basin-scale, hemispheric, and
oceanic) and temporal [interannual (e.g. the El Niño Southern
Oscillation), decadal (e.g. the Pacific Decadal Oscillation, PDO),
and long-term (e.g. global climate change)] scales. Many studies
have revealed that climate change, climate variability, and regime
shifts are associated with fluctuations in fish abundance and popu-
lation dynamics (Mantua and Hare, 2002), which have important
implications for the management of exploited fish stocks (Chavez
et al., 2003). However, both the mechanisms related to climate
and their effects on changes within ecosystems are poorly under-
stood and even more difficult to forecast (Francis et al., 1998;
Dippner, 2006).

There is, however, considerable interest in using relationships
between climate indices and annual recruitment processes for
fish stocks to improve the performance of management strategies
(Myers, 1998). Once correlations between recruitment and climate
have been established, they may point the way towards mechanistic
explanations of the effects of climate on recruitment. Relationships

between recruitment and climate can be used to increase the accu-
racy of estimates of historical recruitment and may allow for the

short-term prediction of future recruitment.
It might be expected that fisheries management strategies could

be tailored to the prevailing environmental state, so that, for
instance, the current level of stock productivity is used when esti-
mating biologically allowable fishery removals. For example, the
management strategy for the Pacific sardine (Sardinops sagax)

fishery off the US West Coast uses the average sea surface tempera-
ture (SST) at Scripps Pier (La Jolla, CA, USA) during the three pre-
ceding seasons to calculate the fraction of the estimated biomass

that will be used to set the acceptable biological catch (ABC) for
the following year (PFMC, 2007). This management strategy was
selected based on simulation studies where the shape of the
stock–recruitment curve changed depending on temperature

(Anon., 1998). However, for gadoid-like species, Basson (1999)
concluded that there was no gain in average yield and progress
towards conservation objectives when environmental indices

were used for short-term recruitment predictions. When environ-
mental indices were used to alter long-term fishing mortality
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reference points, gains were possible if the indices could be pre-
dicted in advance accurately, and the links between environmental
forcing and recruitment were robust and well-defined (Basson,
1999). De Oliveira and Butterworth (2005) evaluated the use of
environmental indices of recruitment in developing management
strategies. Consistent with the findings of Basson (1999), they
found that there were limits to the benefits of including such
indices in management strategies, unless they could account for
at least 50% of the total variability in recruitment.

Walleye pollock (Theragra chalcogramma) is a member of the
family Gadidae, which includes cods and haddocks. It is a semi-
pelagic schooling fish distributed in the North Pacific Ocean, pri-
marily above 408N. Spawning occurs in February and March for
the stock of walleye pollock in the Gulf of Alaska (GOA). The
age-at-50% maturity for GOA walleye pollock is 4.9 years and
GOA walleye pollock live to at least age 15 years (Dorn et al.,
2005). Long-term trends and changes in the productivity of
walleye pollock appear to have been influenced profoundly by
climate change, environmental variability, and regime shifts
(Jurado-Molina and Livingston, 2002). Regime changes in the
North Pacific Ocean in 1977 and 1989 (Hare and Mantua, 2000)
are also believed to have affected the composition of the GOA eco-
system (Anderson and Piatt, 1999).

Recruitment success of walleye pollock in the GOA has been
postulated to be related to several effects of climate (Table 1;
Figure 1). For example, it has been hypothesized that the seasonal
effects of precipitation, wind-mixing energy (WME), and trans-
port in the Alaska Coastal Current and ocean water advection
near Shelikof Strait affect walleye pollock recruitment (http://
www.pmel.noaa.gov/foci/forecast/06.pdf; Dorn et al., 2006).
Specifically, it has been proposed that high levels of precipitation
can lead to more eddies, which are thought to be beneficial for
the survival of early life-history stages (Bailey et al., 2005). High
levels of WME during winter are hypothesized to lead to greater
survival of eggs and larvae, because of entrainment, and of early
juveniles owing to increases in offshore plankton assemblages
(Bailey et al., 2005). In contrast, high levels of WME and advection
in spring and early summer can lead to greater turbulence and
mixing in the water column, which is thought to affect negatively
larval and juvenile feeding, transport, and survival (Bailey and
Macklin, 1994; Ciannelli et al., 2004). An interaction between

SST and WME has also been postulated (Bailey et al., 2005), in
that low SST and high winds may lead to decreased survival.

A directed foreign fishery for walleye pollock in the GOA began
in 1964, which transitioned to a fully US domestic fishery in the
mid-1980s (Dorn et al., 2005). It is the second largest directed
fishery in the GOA, with annual catches between 50 000 and
120 000 metric tonnes (t) since 1986 (Dorn et al., 2005). The
fishery is managed by the National Marine Fisheries Service
(NMFS), based on recommendations from the North Pacific
Fishery Management Council (NPFMC). The management strat-
egy used for the GOA walleye pollock fishery is the “Tier 3
harvest control rule” (NPFMC, 2006). This management strategy
uses a constant fishing mortality rate that decreases linearly
when the stock is assessed to be below a reference level of spawning
biomass. Since 2002, the NPFMC has consistently adopted
measures that reduce the ABC recommendation from the Tier 3
harvest control rule to provide greater protection against assess-
ment uncertainty when the stock drops below reference levels
(Dorn et al., 2001).

In this study, we considered the effects of climate change on the
productivity of the GOA walleye pollock stock through fluctu-
ations in age-1 abundance within a management strategy evalu-
ation (MSE; Smith, 1994) framework. This differs from previous
work (A’mar et al., 2008), in that it combined quantifying hypo-
theses about the effects of climate change on the walleye pollock
stock and evaluating the responses of the current and an alterna-
tive management strategy to those effects. The objective was to
assess whether the two management strategies, which are both
based on dynamic feedback, were robust to variations in age-1
abundance caused by the climate effects on GOA walleye
pollock. In contrast to previous studies, the primary aim of this
study was not to provide support for any of the mechanisms
through which climate change would act, but rather to assess
which (if any) of them (if correct) would lead to undesirably
poor performance of the management system, and, if so, to evalu-
ate the degradation in performance.

Methods
MSE, which is also referred to as management procedure evalu-
ation (De la Mare, 1986), involves testing of a management strat-
egy using simulation, and summarizing the results using

Table 1. Climate factors influencing walleye pollock development and survival in the GOA in their first year.

Mechanism Index Season Sign Reference

Primary production Precipitation Winter þ Bailey et al. (2005)
Primary production WME Winter 2 Bailey et al. (2005)
Concentration of prey and larvae Eddy formation because of

freshwater input—
precipitation

Spring þ Kendall et al. (1996)

Concentration of prey and larvae Upwelling and transport—WME Spring 2 Kendall et al. (1996)
Stage duration Temperature Spring þ Kendall et al. (1996)
Water column turbulence, eddies, transport,

advection, and upwelling
Precipitation Spring þ Ciannelli et al. (2004) and Bailey

et al. (2005)
Water column turbulence, eddies, transport,

advection, and upwelling
WME Spring and

summer
2 Bailey and Macklin (1994), Ciannelli

et al. (2004), and Bailey et al.
(2005)

Temperature affects the amount of prey and
pelagic habitat for juveniles and age-0
animals

SST (may interact with other
environmental factors)

Summer and
autumn

+ Bailey (2000) and Bailey et al. (2005)

The columns Index and Sign indicate, respectively, observable indices for each mechanism and the postulated direction that increases in the quantity
concerned may have on the recruitment of GOA walleye pollock.
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performance measures to determine how effective the manage-
ment strategy is at achieving fishery management goals, given
uncertainty (Smith, 1994). The components of an MSE are an
operating model, which represents the true dynamics of the
stock through time and generates the data to be used by the man-
agement strategy, the management strategies to be evaluated, and a
set of performance measures that are determined from the man-
agement goals. The operating model is used to subject the manage-
ment strategy to assessment error, uncertainty, and hypotheses
regarding the link between climate and recruitment during a pro-
jection period.

In this study, historical environmental indices were used to
quantify the effects of potential climate-induced mechanisms on
age-1 abundance of GOA walleye pollock. The performance of
the management strategies was therefore evaluated given a
relationship between climate and age-1 abundance. The stock
assessment data used in this study were those available as of 1
January 2006, so the start year of the simulations was 2006. The
end year of 2050 was chosen, because the datasets from the
Intergovernmental Panel on Climate Change (IPCC) climate
models are argued to be reasonable for the first half of the twenty-
first century, but the projections of the forcing mechanisms are not
as clear for the latter half (IPCC, 2007a). The stock, the influences
of climate, and the management strategy were projected forward
with feedback annually over the 45-year period 2006–2050 by

forcing age-1 abundance based on the values for the future
climate indices (datasets from IPCC climate models).

Data
The data for the projection models of age-1 abundance for walleye
pollock were based on the relationship(s) used by Dorn et al.
(2006) to make forecasts of recruitment, and those factors postu-
lated by Bailey et al. (2005), Bailey and Macklin (1994), and
Ciannelli et al. (2004) to influence age-1 abundance. The data
used in the projections were restricted to those data sources that
can be forecast into the future [Dorn et al. (2006) make forecasts
for recruitment based on larval counts and stock assessment model
estimates of age-2 recruitment, as well as precipitation, WME, and
advection of ocean water near Shelikof Strait. Data on advection
are not available for the entire period of the fishery, and larval
counts cannot be predicted into the future (except as being
related to spawning biomass, but that relationship is very weak;
Dorn et al., 2006).]:

(i) The monthly precipitation on Kodiak Island, Alaska, for
January 1962 through December 2005 [S. Allen Macklin,
NOAA/Pacific Marine Environmental Laboratory (PMEL),
pers. comm.].

(ii) Monthly WME at 578N 1568W estimated from sea-level
pressure analyses for January 1962 through December 2005

Figure 1. The GOA (inset), and Kodiak Island and the Shelikof Strait area.
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(S. Allen Macklin, pers. comm.). The data are in units of
watts m22, converted to m3 s23 to match the outputs from
the IPCC models by dividing by the density of air at sea
level at 08C, 1.293 kg m23.

(iii) Monthly SST in 8C at 558N 1578W, which is down-current
from Shelikof Strait, for January 1960 through December
2005 (ICOADS 28 Enhanced SST from http://www.cdc.
noaa.gov/icoads-las/servlets/dataset).

The environmental data were calculated for the Kodiak Island/
Shelikof Strait area (Figure 1), because the Shelikof Strait has his-
torically been one of the main spawning areas for walleye pollock
in the GOA (Bailey et al., 2005).

The time-series for each of the three climate indices (precipi-
tation, WME, and SST) were averaged over four 3-month
seasons to form indices for winter (January, February, and
March), spring (April, May, and June), summer (July, August,
and September), and autumn (October, November, and
December), resulting in the 12 seasonal climate indices used in
the analyses. The seasonal climate indices are correlated with
each other (Table 2), and represent periods that reflect the physical
environment and biological conditions before and during spawn-
ing, and survival during the post-larval and early juvenile stages
(Table 1). The historical seasonal climate indices, “CIi,y”, were nor-
malized by calculating the mean, �Ii, and standard deviation, si, for
each seasonal climate index i and defining the normalized indices,
“Ii,y”, as ðCIi;y � �IiÞ=si. Consideration was also given to including
the monthly PDO index in the analyses, but this was not
pursued, because the PDO anomaly time-series is highly correlated
with SST (rwinter ¼ 0.788; rspring ¼ 0.691, rsummer ¼ 0.417,
rautumn ¼ 0.595).

The predictions of precipitation, WME, and SST, on which the
operating model projections of age-1 abundance were based, were
obtained from the downscaled output of six IPCC general circula-
tion models (Table 3). These models produced results for the
Northeast Pacific Ocean for the period January 2001 through
December 2050 [provided by Nicholas Bond and Muyin Wang,
University of Washington Joint Institute for the Study of the
Atmosphere and Ocean (UW/JISAO)] and were selected for
both their accuracy with respect to the historical data and their
predictions with respect to future climate scenarios (Randall
et al., 2007). The climate indices forecast using these models

represented local-, regional-, and basin-scale processes in the
GOA and were used for the 45-year projection period, 2006–
2050. Specifically, these six models were in the subset of models
that replicated the spatial pattern and temporal characteristics of
the first principal component of SST in the North Pacific Ocean
(the PDO) observed in the latter half of the twentieth century.
For some variables, such as SST and precipitation, the information
used was direct model output. For the wind mixing, predictions
were based on empirical relationships that have been established
using direct measurements for mixing and large-scale pressure
patterns (which are available from the twenty-first century fore-
casts from the general climate models, GCMs; IPCC, 2007b).
The forecasts used are based on the moderate A1B emissions scen-
ario, which assumes that, over 2000–2100, the world population
increases slowly, economic growth is rapid, and new and more effi-
cient technology is introduced, resulting in decreasing methane
and nitrous oxide emissions and increases in other greenhouse
gas emissions (IPCC, 2007b). In general, the GCM forecasts are
not highly sensitive to the assumed emissions scenario for the
first half of the twenty-first century, but this sensitivity becomes

Table 2. Correlations between the historical seasonal climate indices (1962–2005).

Winter Spring Summer Autumn

Precip WME SST Precip WME SST Precip WME SST Precip WME SST

Winter Precip 1.0
WME 20.347 1.0
SST 0.671 20.309 1.0

Spring Precip 0.249 20.071 0.010 1.0
WME 20.389 0.428 20.271 20.098 1.0
SST 0.547 20.364 0.695 0.001 20.581 1.0

Summer Precip 0.046 20.050 0.045 0.007 20.093 20.105 1.0
WME 20.063 0.195 20.110 0.208 0.394 20.105 0.048 1.0
SST 0.446 20.212 0.530 0.099 20.659 0.832 20.033 20.124 1.0

Autumn Precip 0.294 20.181 0.108 0.206 20.296 0.170 20.005 20.186 0.246 1.0
WME 20.237 0.296 20.121 20.162 0.425 20.278 20.061 0.410 20.406 20.379 1.0
SST 0.511 20.180 0.494 0.254 20.273 0.578 20.048 0.104 0.615 0.383 20.377 1.0

The italicized values indicate correlations (r) between 0.4 and 0.5 in absolute terms, and the emboldened values indicate correlations .0.5 in absolute
terms. “Precip” is precipitation, “WME” is wind-mixing energy, and “SST” is sea surface temperature.

Table 3. The eight datasets [from the World Climate Research
Programme (WCRP) CMIP3 multi-model dataset] from the six IPCC
general circulation models (IPCC, 2007b).

Model Source Abbreviation

CCSM3.0 National Center for
Atmospheric Research,
USA

ccsm31

GFDL 2.0 and 2.1 NOAA/Geophysical Fluid
Dynamics Laboratory
(GFDL), USA

gfdl201, gfdl211

MIROC3.2, High and
Medium Resolution

The Center for Climate
System Research/
National Institute for
Environmental Studies/
Frontier Research Center
for Global Change,
Japan

mirocH1,
mirocM1,
mirocM2,
mirocM3

UKMO-HadCM3 The Meteorological
Office/Hadley Centre
for Climate Prediction
and Research, UK

ukhadcm31
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substantial for the latter half of the century. The GCM simulations
comprise a set of individual runs, so are formally independent, but
do share commonalities in terms of model architecture and para-
meterizations as well as in the forcing associated with assumed
trace gas concentrations.

Including effects of climate on future recruitment success
The operating model represented the “true” state of the resource,
and incorporated hypotheses regarding how the age structure of
the resource changed through time. The operating model was
age-structured, projected both age-1 abundance and spawning
biomass, and included several process and observation error
terms (A’mar et al., 2008). It was similar in structure to the popu-
lation dynamics model on which the 2006 GOA walleye pollock
stock assessment (Dorn et al., 2006) was based, primarily
because this was the most recent assessment when the analyses
of this paper were conducted. The main differences between the
operating model and the original stock assessment model were
that the operating model used a linear combination of seasonal
climate indices to account for some of the variation in age-1 abun-
dance and the operating model covered ages 1 through 15 years,
whereas the stock assessment model covered ages 2 through
10 years.

The operating model was conditioned on historical fishery,
survey, and environmental data. Conditioning was achieved
using a Bayesian estimation approach [Markov chain Monte
Carlo (MCMC); Hastings, 1970; Gelman et al., 2004], which led
to a posterior distribution for the values of the parameters of
the operating model (e.g. coefficients for the seasonal environ-
mental indices, historical recruitment, historical fishing mortal-
ities, survey catchability, fishery and survey selectivity
parameters, etc.). Each future year of the 45-year projection
period involved: (i) using the operating model to generate the
survey and fishery data used by the estimation model component
of the management strategy; (ii) applying the management strat-
egy to determine a catch limit; (iii) determining the consequences
of the catch limit on the population represented in the operating
model; and (iv) generating future recruitment based on the
relationship between age-1 abundance and the IPCC climate
indices. In the projections, the recruitment process error, and
the observation error applied to the “true” survey indices of abun-
dance, survey catch proportions-at-age, and fishery catch
proportions-at-age, was temporally uncorrelated. For the purposes
of this study, 100 simulations, each of which was based on a differ-
ent draw from the Bayesian posterior distribution, were conducted
for each operating model. Implementation error was not con-
sidered in this study.

Some of the fluctuations in estimated age-1 abundance from
the base operating model were ascribed to climate when estimating
historical and generating future age-1 abundance in the climate

operating models; that is,

Ryþ1 ¼ �R1 exp
Xn

i¼1

aiIi;y

 !
exp 1y �

s2
R

2

� �
; 1y � Nð0;s2

RÞ; ð1Þ

where �R1 is the average level of age-1 abundance, 1y the lognormal
recruitment deviation for year y, sR the level of recruitment varia-
bility, “Ii,y” the normalized seasonal climate indices, and “ai” are
the coefficients for the linear model of climate indices. The
future seasonal climate indices from the IPCC datasets were nor-
malized with the historical standard deviation and the mean of
each future seasonal climate index for 2001–2005.

The value for sR, which was set to 1.0 by Dorn et al. (2005), was
set to 0.6 for the purposes of this study, so that inclusion of the
linear model of the seasonal climate indices in the operating
models would account for some of the variation in age-1 abun-
dance. A lower value for recruitment variability may be more
appropriate for more complex and/or biologically motivated
recruitment models (e.g. models that incorporate density-
dependence, spawning biomass, autocorrelation, etc.; Haltuch
et al., in press).

More than 100 models based on subsets of the 12 seasonal
climate indices were examined. The quality of the fit for each
model to the data available for assessment purposes (catch,
survey indices of abundance, catch age and length compositions,

Table 4. The climate indices selected for inclusion in the operating models, the negative log likelihoods (NLL) for these operating models,
the number of parameters estimated in each model, and their AIC values.

Model Precip– Win SST– Spr Precip– Sum SST – Sum SST– Aut NLL # Param AIC DAIC

Base – – – – – 1 309.82 307 3 233.64 116.18
Model 1 I I I I I 1 246.73 312 3 117.46 0.00
Model 2 I I – I I 1 247.80 311 3 117.60 0.14

“I” indicates that the index is used in a model. Model 2 is nested within model 1. See Appendix for more details.

Figure 2. The OFL, the NPFMC Tier 3 upper bound of fishing
mortality, and the upper bound of fishing mortality under the Dorn
et al. (2001) control rule.
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and survey age and length compositions) was compared with
that of the base operating model, which does not include any
climate indices, using Akaike’s Information Criterion (AIC;
Akaike, 1973). Cases where the MCMC algorithm obviously
failed to converge were ignored. The base operating model (no
climate indices) estimated 307 parameters (the average level of
age-1 abundance, the average level of fishing mortality, catchabil-
ity for the surveys, selectivity parameters for the fishery and the
surveys, annual recruitment deviations, annual fishing mortality
deviations, annual fishery selectivity deviations, and initial

deviations from the equilibrium age structure). Two operating
models that included a linear combination of seasonal climate
indices were selected for the MSE (Table 4, Appendix).
Operating model 1 included winter precipitation, spring SST,
summer precipitation, summer SST, and autumn SST.
Operating model 2, which is nested within model 1, included
winter precipitation, spring SST, summer SST, and autumn
SST. These two models had the lowest values for AIC of all the
models that included a linear combination of seasonal climate
indices. All models that included a linear combination of

Figure 3. Time-trajectories for the current management strategy (left panels) and the dynamic B0 management strategy (right panels)
when there were no climate effects on recruitment: spawning biomass relative to the reference level SB40% on a log scale (with three
realizations of spawning biomass relative to SB40%, upper panels), and catch applied in thousands of tonnes (with three realizations of the
catch applied, lower panels). For the envelopes, the solid black line is the median, the darker shaded area covers the 40th through the 60th
percentiles, the lighter shaded area covers the 25th through the 75th percentiles, and the dashed lines are the 5th and 95th percentiles.
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seasonal climate indices were preferred to the base model
according to AIC.

The management strategy
The management strategy was the combination of a catch control
rule (Figure 2) and a stock assessment (estimation) model that
fitted an age-structured population dynamics model to fishery,
survey, and biological data to produce estimates of the biological
reference points F40% (the fishing mortality that reduces the
spawning biomass-per-recruit to 40% of the average unfished
spawning biomass-per-recruit) and SB47% (the spawning
biomass associated with F47%) and the current spawning
biomass, which were used in the control rule. The “Dorn rule”
[Equation (2), with a ¼ 0.05; Figure 2] determines the upper

bound of fishing mortality, FABC, and hence the ABC:

FABC �

F40% if SB=SB47% . 1
F40%½ðSB=SB47% � aÞ=ð1� aÞ� if a , SB=SB47% � 1
0 if SB=SB47% � a

8<
: :

ð2Þ

The control rule also included an overfishing level (OFL) of fishing
mortality (FOFL), defined in terms of F35% (which is used as a
proxy for FMSY). FOFL is used to determine the OFL. If the
fishing mortality exceeds FOFL, “overfishing” as defined under
the Magnuson–Stevens Fishery Conservation and Management
Act (MSFCMA) is said to be occurring. A spawning biomass of
20% of the average unfished spawning biomass, SB20%, has been

Figure 4. Time-trajectories of spawning biomass relative to the reference level SB40% on a log scale under operating model 1 for the eight IPCC
datasets when catch limits were based on the current management strategy. Lines and envelopes are as in Figure 3.
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established as a level below which no directed fishing would be
allowed (the vertical line in Figure 2), as an additional precaution-
ary measure to protect an endangered stock of Steller sea lions
(Eumetopias jubatus), which consume walleye pollock.

Two management strategies were considered. Both defined the
reference level of spawning biomass in year y, SB47% (y), as the
spawning biomass-per-recruit at F47% multiplied by the average
recruitment for year y:

SB47%ðyÞ ¼ SBPRðF47%Þ �Ry; ð3Þ

where SBPR(F) is the spawning biomass-per-recruit when the fully
selected fishing mortality equals F. The current management

strategy defined �Ry as the mean recruitment for year classes
spawned between 1977 and year y21:

�Ry ¼
1

ðy � 1979Þ

Xy�1

u¼1979

Nu;2; ð4Þ

where Ny, a is the number of animals of age a at the start of year y.
The dynamic B0 management strategy defined �Ry as a weighted
average of the past 25 years of age-2 abundance:

�Ry ¼

P26
a¼2 mawaNy�aþ1;2 exp �

Pa�1
b¼2 Mb

� �
P26

a¼2 mawa exp �
Pa�1

b¼2 Mb

� � ; ð5Þ

Figure 5. Time-trajectories of spawning biomass in millions of tonnes under operating model 1 for the eight IPCC datasets when catch limits
were based on the current management strategy. The thick black horizontal lines indicate the 2006 value of SB20% and the light grey horizontal
lines indicate the 2006 value for SB40% (Dorn et al., 2006); others lines and envelopes are as in Figure 3.
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where ma was the fraction of animals of age a that are mature, and
wa was the average mass of an animal of age a. The term dynamic
B0 refers to calculating the reference level of unfished equilibrium
biomass, B0, under the prevailing environmental conditions (cf.
MacCall et al., 1985). This approach allows the average level of
age-2 abundance on which management decisions are based to
be much more responsive to prevailing conditions and to recruit-
ment values based on their prevalence in the population and their
contribution to spawning biomass.

Output statistics
The performance measures consisted of two types (estimation and
management). The management performance measures were

selected based on the goals of the NPFMC (NPFMC, 2006) and
the MSFCMA. They were the spawning biomass relative to the
reference level SB40%, the probability that the spawning biomass
fell below SB20%, the probability that the catch was higher than
OFL, and the catch over the projection period.

The results of the simulations are displayed graphically for
brevity. Specifically, the ability of the management strategy to
leave the spawning biomass close to the reference level SB40%

and achieve high catches was summarized using plots of the
following:

(i) the distribution of the time-trajectory of the spawning
biomass;

Figure 6. Time-trajectories of catch in thousands of metric tonnes under operating model 1 for the eight IPCC datasets when catch limits are
based on the current management strategy. The lines and envelopes are as in Figure 3.
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(ii) the distribution of the time-trajectory of the ratio of the
spawning biomass to the reference level of SB40%;

(iii) the distribution of the time-trajectory of annual catches.

The estimation performance measures are illustrated in plots of
the distribution of the time-trajectory for the percentage relative
errors of: (i) spawning biomass in the final year of the assessment
period; (ii) fishing mortality in the final year of the assessment
period; (iii) the reference level of spawning biomass, SB40%; and
(iv) the ABC under the control rule. The assessment period was
defined as 1961–2005 (the period of historical data) through
year y21 of the projection period for a stock assessment per-
formed in year y. The operating model values for SB40%, SB47%,
and the ABC were based on average age-1 recruitment, calculated
using an appropriately modified version of Equation (5).

Results
The climate–recruitment models
The two operating models were selected from more than 100
candidate models using AIC, and included winter precipitation,
spring SST, summer SST, and autumn SST. Operating model 1
also included summer precipitation. The signs of the model esti-
mates for the coefficients for winter precipitation, spring SST,
and autumn SST matched those expected from established
hypotheses (compare Table 1 and Appendix); that is to say,
GOA walleye pollock recruitment was estimated as negatively
correlated with spring SST, and positively correlated with
winter precipitation and summer SST. The model estimates of
the coefficients for winter precipitation, spring SST, summer
SST, and autumn SST were significant, in that none fell
outside of the 95% asymptotic confidence interval for each

Figure 7. As for Figure 4, except that the results pertain to the dynamic B0 management strategy.
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coefficient. The specific mechanisms governing the effects of
summer precipitation and autumn SST on the abundance of
age-1 walleye pollock are, however, not evident from past
work, but the selection of these covariates suggests that they

should be the focus for the development of new hypotheses.
The climate models explained a substantial fraction of the vari-
ation in the estimates of age-1 recruitment. The standard devi-
ation of recruitment about its expected value was 0.98 for the
base operating model, 0.76 for operating model 1, and 0.78 for
operating model 2.

Management performance
The management performance of the current and the dynamic B0

management strategies was evaluated in terms of the spawning
biomass relative to the reference level SB40%, and by the amount
of and variation in catches. These two management strategies
achieved average catches of 146 900 and 146 300 t (Figure 3) for
2015–2050, respectively, for the base operating model, where
there was no effect of climate on age-1 abundance. Both strategies
maintained spawning biomass above SB40% over 90% of the simu-
lations (Figure 3).

The performance of the current management strategy in terms
of catches and future stock sizes depended on the choice of IPCC
dataset (see Figures 4–6 for results for model 1). Although the
time-trajectory of true spawning biomass relative to the true refer-
ence level SB40% (SB/SB40%) was sensitive to which IPCC dataset
was used to determine future recruitment in the operating model,
stock size was kept above SB40% between 69% (dataset
ukhadcm31) and 98% (dataset ccsm31) of the 4500 year � simu-
lation combinations that constitute the projection period
(Figure 4). Spawning biomass (Figure 5) varied more than SB/
SB40% because SB40% changed over time as a function of expected
age-1 abundance [Equation (3)], so variability (and trend) in
spawning biomass was scaled out to some extent in Figure 4.
The projections based on datasets ccsm31, gfdl201, and
mirocM1 left the spawning biomass below the 2006 estimate of
SB40% (220 000 t; Dorn et al., 2006) for most of the projection
period, and even below the 2006 estimate of SB20% for the latter
part of the projection period. The spawning biomass was

Figure 8. Probability of spawning biomass dropping below SB20% (a)
and the catch exceeding the OFL (b) for operating model 1 for the
eight IPCC datasets when catch limits were based on the current
management strategy.

Table 5. Minimum and maximum values over 2015–2050 of the median (over simulations) percentage relative errors for spawning
biomass (SB), fishing mortality (F ), SB40%, and ABC.

Scenario Recruits (3109)

Current management strategy “Dynamic B0” management strategy

SB F SB40% ABC SB F SB40% ABC

Base 1.565 25.24 16.06 9.80 25.59 25.08 15.57 20.48 21.99
1.190 211.56 5.06 26.69 219.04 211.19 5.31 210.47 214.97

ccsm31 1.224 3.87 6.18 100þ 237.79 23.15 8.03 40.57 34.44
0.015 29.59 225.40 63.18 299.42 214.01 237.12 214.72 224.29

gfdl201 2.534 1.42 6.54 100þ 216.48 21.08 10.96 33.52 11.52
0.047 210.20 213.27 64.37 299.37 214.85 214.34 242.47 227.23

gfdl211 4.536 4.30 15.97 100þ 20.24 7.53 20.19 36.11 7.36
0.072 211.54 28.56 230.17 299.10 213.00 211.43 249.21 238.04

mirocH1 3.972 0.40 16.77 100þ 22.79 20.28 16.74 25.47 1.33
0.114 213.13 23.83 229.61 252.98 213.58 25.24 229.01 228.81

mirocM1 3.837 0.27 15.60 100þ 23.07 0.09 17.78 27.77 8.54
0.054 212.72 210.09 222.29 299.34 214.21 212.28 236.60 230.50

mirocM2 1.866 21.87 11.60 100þ 26.81 22.43 12.62 22.50 0.22
0.074 210.57 23.95 28.68 249.62 212.04 23.26 226.19 225.54

mirocM3 7.918 4.14 21.35 99.81 8.68 3.91 23.55 40.18 0.77
0.070 215.40 21.35 254.02 244.92 215.15 21.99 243.68 243.01

ukhadcm31 13.312 7.65 27.95 99.08 9.77 7.99 31.87 53.35 2.77
0.008 218.61 215.90 264.73 298.70 216.50 224.71 247.03 260.06

Values of 100þ indicate that the median relative errors concerned were at least 100%. Minimum and maximum values over 2015–2050 for the medians
over simulations of age-1 abundance (recruits) are given for each scenario. The results in this table are based on operating model 1.
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between the 2006 values for SB20% and SB40% for most of the pro-
jection period for dataset mirocM2. In contrast, the spawning
biomass was generally substantially above these levels for the pro-
jections based on the remaining IPCC datasets.

The current and dynamic B0 management strategies differed in
that the definition of SB40%, because the latter was essentially the
same as that of the operating model. The values for SB/SB40%

under the dynamic B0 management strategy exhibited less inter-
annual variation than those for the current management strategy
(Figures 4 and 7), and SB/SB40% was much closer to 1 for all
IPCC datasets for the dynamic B0 strategy. This management strat-
egy also set higher catches during periods of low recruitment and
vice versa.

Extreme results for operating model 1 occurred when age-1
abundance was driven by IPCC datasets ccsm31 and
ukhadcm31. The performance of the current and dynamic B0

management strategies were qualitatively similar for operating
models 1 and 2 for these datasets, because the results were
largely insensitive to excluding summer precipitation when gener-
ating future age-1 abundance.

The time-trajectories of catch (Figure 6) exhibited the same
patterns as those for spawning biomass, with higher variability
at higher catch levels, although, as expected, catches were much
lower when stock size was low owing to the threshold nature of
the catch control rule [see Equation (2)]. The catches under the
eight IPCC datasets were much more variable than those under

Figure 9. (a) Time-trajectories of spawning biomass relative to the reference level SB40% on a log scale, (b) catch applied in thousands of
tonnes, (c) the probability of the catch exceeding the OFL and, (d) the probability of spawning biomass dropping below SB20% under operating
model 1 for the combined results for the eight IPCC datasets when catch limits were based on the current management strategy. Lines and
envelopes are as in Figure 3.
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the base operating model (contrast Figures 3 and 6). The average
annual catches for 2015–2050 under the climate scenarios for
operating model 1 ranged from 18 000 to 314 000 t for the
current management strategy and from 29 000 to 300 000 t for
the dynamic B0 management strategy (datasets ccsm31 and
ukhadcm31, respectively). For operating model 2, the average
annual catches were 18 000 and 29 000 t for dataset ccsm31, and
265 000 and 252 000 t for dataset ukhadcm31 (for the current
and dynamic B0 management strategies, respectively).

Figure 8 summarizes the performance of the current manage-
ment strategy in terms of the probability of the spawning
biomass dropping below the SB20% [defined using Equation (5)]
and the catch exceeding OFL. All IPCC datasets led to a probability
of ,0.05 of dropping below SB20% (Figure 8a). Four of the IPCC
datasets (gfdl211, mirocM1, mirocM3, and ukhadcm31) led to at
least one period when P(Catch . OFL) was 0.10 or larger, with a
maximum value for P(Catch . OFL) of ,0.25 (Figure 8b). The
average catches and the variation in catch for IPCC datasets
ccsm31, gfdl201, and mirocM2 were lower on average than those

for the other IPCC datasets (Figure 6), because the average age-1
abundance and variation in age-1 abundance for these datasets
were lower than those for the other IPCC datasets (Table 5). The
average (over simulations) coefficient of variations (CVs) of the
future time-trajectories of age-1 abundance for datasets ccsm31,
gfdl201, and microcM2 were 1.77, 1.91, and 1.55, respectively, sub-
stantially higher than the average CV for the base operating model
(0.64). The average CVs of recruitment for the other IPCC datasets
ranged from 1.73 to 2.58. The dynamic B0 management strategy
performed slightly better than the current management strategy
in terms of the probability of the spawning biomass dropping
below the SB20%, but overall, the patterns were similar to those
for the current management strategy (results not illustrated). In
contrast, the dynamic B0 management strategy performed worse
than the current management strategy in terms of P(Catch .

OFL), because catches were higher during periods of lower pro-
ductivity for the dynamic B0 management strategy.

The probability of dropping below SB20% was essentially zero
for the base operating model for both management strategies,

Figure 10. Estimation performance for the base operating model (no climate effects on recruitment) for the current management strategy:
the distributions of percentage relative error between the estimated and “true” values for the most recent year of the assessments for (a)
spawning biomass, (b) fishing mortality, (c) SB40%, and (d) ABC.
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whereas the maximum (over time) value of P(Catch . OFL) was

0.05 for the current management strategy and 0.12 for the dynamic
B0 management strategy for this operating model. These probabil-
ities were higher for all IPCC datasets (Figure 8), indicating a

higher probability of management failure, i.e. setting a non-zero
ABC when stock size is below SB20% or setting an ABC that

leads to a catch greater than that mandated in the management
plan, in the face of climate-induced fluctuations in walleye
pollock recruitment.

An overall impression of management performance was
achieved by pooling the results for the eight IPCC datasets over
simulations. Figure 9 displays the integrated results for operating
model 1 and the current management strategy. As expected, the

integrated results exhibited less variation than those for the indi-
vidual IPCC datasets did (contrast Figure 9 with Figures 4 and
6). However, there was still considerable interannual variation in

biomass and catch. The probability of spawning biomass dropping
below SB20% was, as expected, higher for the integrated results than

for the base operating model, whereas the probability of the catch
exceeding the OFL was also somewhat higher than for the base
operating model.

Estimation performance
The median (over simulations) percentage relative errors for the
current management strategy and the base operating model were
mild, generally 10% or less, with a negative bias for spawning
biomass, SB40%, and ABC, and a positive bias for fishing mortality
(Figure 10). A’mar et al. (2008) established that these biases are
the result of differences between the operating model and the esti-
mation model, in particular the age range each model covers,
which leads to differences in selectivity for the fishery and the
surveys.

In contrast, estimation errors were more serious when age-1
recruitment was driven by climate, specifically for SB40% and
ABC (e.g. the time-trajectories of relative error for IPCC datasets
ccsm31 and ukhadcm31 in Figures 11 and 12). Estimation per-
formance was summarized by the minimum and maximum
values of the median percentage relative errors for spawning
biomass, fishing mortality, SB40%, and ABC over 2015–2050 (a
period after which the median percentage relative errors in
Figure 10 stabilized). Table 5 lists these minima and maxima for
the base operating model, and when age-1 abundance was
driven by climate according to operating model 1. The range of

Figure 11. As for Figure 10, except that the results pertain to operating model 1 with IPCC dataset ccsm31, and catch limits were based on
the current management strategy.
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values in Table 5 is much wider when age-1 abundance was forced
by climate than for the base operating model, and depended on the
IPCC dataset (Table 5; Figures 11 and 12). The dynamic B0 man-
agement strategy estimated SB40% much better than the current
management strategy did (results not presented), which is not sur-
prising, because it is based on the correct definition for SB40%.
Nevertheless, the errors when estimating ABC were high for
both management strategies when recruitment was forced by
climate (exceeding 50% often; Table 5).

The IPCC datasets with the largest ranges in median age-1
abundance (gfdl211, mirocM3, and ukhadcm31) led to the
widest ranges in median percentage relative errors (Table 5),
which suggests that one reason for the poorer estimation perform-
ance for the climate-based scenarios is that the assessment model
was not able to detect large changes in recruitment quickly
enough.

Discussion
The purpose of this study was twofold: (i) to examine the effect on
the performance of the current management strategy of including
seasonal climate indices as direct effects on age-1 abundance, and

(ii) to determine the relative performance of the current manage-
ment and the dynamic B0 management strategies as a function of
which of the eight IPCC datasets was used to forecast future
climate indices. Two operating models that included a relationship
between climate indices and age-1 abundance of walleye pollock
were considered. Both models included winter precipitation,
spring SST, and summer SST, which are all associated with biologi-
cal hypotheses regarding their effects on walleye pollock in the
GOA in their first year.

The current management strategy kept the stock close to the
reference level SB40% on average. However, this management strat-
egy allowed the stock to be reduced to very low levels (below the
2006 estimate of SB20%) under some climate scenarios. The
dynamic B0 management strategy kept spawning biomass closer
to the reference level SB40% and had a lesser probability of reducing
the spawning biomass to below SB20%. However, the dynamic B0

management strategy also had a higher probability of the catch
exceeding the overfishing limit. The dynamic B0 management
strategy was based on the correct model for SB40% and hence
(potentially) had an unrealistic advantage over the current man-
agement strategy. Given this, and the results of this study, there

Figure 12. As for Figure 10, except that the results pertain to operating model 1 with IPCC dataset ukhadcm31, and catch limits were based
on the current management strategy.
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seems little reason to advocate the dynamic B0 management
strategy.

The results varied considerably depending on which of the
eight IPCC datasets was used to drive age-1 abundance, from
low overall productivity for dataset ccsm31 to large changes in
productivity for dataset ukhadcm31. The main characteristics in
the IPCC datasets were that average SST and variability in SST
increased over the projection period (Figure 13c). The coefficients
of the models for SST were generally negative, implying a declining
trend over time in age-1 abundance (which is reflected in the
spawning biomass trajectories in Figure 5).

Some of the simulations led to levels of recruitment that were
outside of the historical range. In general, the trends in the
environmental variables were such that recruitment was projected

to decrease over time. However, the environmental indices were
predicted to be more variable into the future (in particular,
WME; Figure 13b), which led to the possibility of recruitments
that could exceed the historical levels of recruitment over the
period 1976–2005. This extrapolation is undesirable in principle,
but reflects the possibilities under future climate scenarios.

Both the current and the dynamic B0 management strategies
allowed spawning biomass to drop to low levels (even when
scaled relative to SB40%, which accounts for changes over time in
recruitment), because the management strategies were occasion-
ally unable to respond sufficiently rapidly to trends in pro-
ductivity. Further exploration of management strategies that
combine aspects of both management strategies, as well as incor-
porate a fixed absolute limit above which the spawning biomass

Figure 13. Time-trajectories of the normalized summer climate indices for the historical period (black line) and the eight IPCC datasets (grey
lines) for (a) precipitation, (b) WME, and (c) SST.
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must be maintained, may improve the performance of a manage-
ment strategy for the GOA walleye pollock fishery with respect to
changes and trends in productivity. In addition, the control rule
defined by Equation (2) specifies the maximum fishing mortality
rate, and hence ABC, at any given level of spawning biomass rela-
tive to SB20%. The analyses of this paper were based on the
assumption that the catch limit was set to the ABC.
Management performance, in terms of avoiding low stock size
and high fishing mortality, would have improved had the catch
limit been set below the ABC. In addition, there is no evidence
of a stock–recruitment relationship for GOA walleye pollock
(Dorn et al., 2006; A’mar et al., 2008), so there is currently no
clear evidence of negative effects stemming from reducing spawn-
ing biomass to below the reference level.

The analyses of this study were based on forcing age-1 abun-
dance using climate indices predicted from IPCC models, where
relationships were characterized using historical climate indices
when estimating age-1 abundance within stock-assessment-like
operating models. Unlike most explorations of the effect of
environmental factors on age-1 abundance, the parameters deter-
mining the relationship between climate indices and age-1 abun-
dance were integrated into the operating model (sensu Maunder
and Watters, 2003) and the projections accounted for the uncer-
tainty in the coefficients for those relationships. In contrast, past
use of the MSE approach to explore the effect of climate forcing
on recruitment (Basson, 1999; Kell et al., 2005; Hill et al., 2006)
was based on postulated relationships (IWC, 1993, 2003, 2005).
The approach followed in this study allowed the data to identify
the climate indices that were correlated with age-1 abundance, as
well as the uncertainty associated with the relationships between
age-1 abundance and climate.

There are several hypotheses about the effects of environmental
forcing on the development and survival of GOA walleye pollock
in their first year. Seasonal influences can act to enhance or
impair survival, directly and indirectly, and in combination with
other factors. Control rules and management strategies need to
take the effects of climate change into account, so that stocks
can be managed in a proactive and precautionary manner. This
study indicates that the MSE approach can be used to explore
the effects of some of these factors. The results of this study
point to how alternative management strategies may be developed
that are more robust to the effects of climate change than the
current management strategy for GOA walleye pollock.

Finally, although this paper has focused on the effect of climate
drivers on age-1 abundance, these are not the only factors that are
likely to affect the dynamics of GOA walleye pollock and hence the
performance of management strategies. Specifically, the GOA eco-
system has experienced major regime-shift events (Hare and
Mantua, 2000) and (perhaps consequentially) changes in the
sizes of fish and invertebrate complexes (NPFMC, 2007). The
latter changes include major increases in the predation of GOA
walleye pollock by fish predators, such as arrowtooth flounder
(Atheresthes stomias; Gaichas, 2006). The MSE approach can be
used to address each of these factors, which should lead to an
ability to comment on which of these factors has the largest
effect on the ability to achieve management goals for GOA
walleye pollock.
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Appendix: Parameter estimates, standard deviations, and correlations
Base scenario operating model

Parameter Estimate s.d. log(R1) Winter precip Spring SST Summer precip Summer SST Autumn SST

log(R1) 20.870 0.057
Operating model 1

log(R1) 20.870 0.059 1.0
Winter precip 0.339 0.119 20.1353 1.0
Spring SST 20.833 0.180 0.1039 20.3197 1.0
Summer precip 20.140 0.095 20.0383 20.1688 0.2164 1.0
Summer SST 0.570 0.187 20.0525 0.1758 20.7516 20.1409 1.0
Autumn SST 20.405 0.130 20.1368 20.3642 0.0458 0.0572 20.3502 1.0

Operating model 2
Winter precip 0.310 0.117 -0.1446 1.0
Spring SST 20.776 0.176 0.1156 20.2945 1.0
Summer SST 0.531 0.185 20.0590 0.1560 20.7462 1.0
Autumn SST 20.394 0.130 20.1350 20.3600 0.0338 20.3457 1.0

The emboldened values indicate correlations .0.5 in absolute terms. “Precip” is precipitation and “SST” is sea surface temperature.
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